Skip to content

Everyone Can Learn Mathematics to High Levels

Jo Boaler

2018 was an important year for the Letchford family – for two related reasons. First it was the year that Lois Letchford published her book: Reversed: A Memoir.[1] In the book she tells the story of her son, Nicholas, who grew up in Australia. In the first years of school Lois was told that Nicholas was learning disabled, that he had a very low IQ, and that he was the “worst child” teachers had met in 20 years. 2018 was also significant because it was the year that Nicholas graduated from Oxford University with a doctorate in applied mathematics.

Nicholas’s journey, from the boy with special needs to an Oxford doctorate, is inspiring and important but his transformation is far from unique. The world is filled with people who were unsuccessful early learners and who received negative messages from schools but went on to become some of the most significant mathematicians, scientists, and other high achievers, in our society – including Albert Einstein. Some people dismiss the significance of these cases, thinking they are rare exceptions but the neuroscientific evidence that has emerged over recent years gives a different and more important explanation. The knowledge we now have about the working of the brain is so significant it should bring about a shift in the ways we teach, give messages to students, parent our children, and run schools and colleges. This article will summarize three of the most important areas of neuroscience that directly apply to the teaching and learning of mathematics. For more detail on these findings, and others, visit youcubed.org or read Boaler (2016).[2]